

Iterative elimination of strictly dominated strategies

Perform iterative elimination of strictly dominated strategies (remember that you can use mixed strategies to eliminate) and find the Nash equilibria.

	A	B	C
X	2;0	3;10	4;4
Y	0;5	5;1	8;2
Z	1;1	2;3	0;1

Solution

For player 1, the pure strategy “Z” is strictly dominated by the pure strategy “X”. The result yields the following matrix:

	A	B	C
X	2;0	3;10	4;4
Y	0;5	5;1	8;2

For player 2, if we combine pure strategies A and B by assigning a probability of 1/2 to each one, this new mixed strategy strictly dominates the pure strategy C.

$$0,5 * 0 + 0,5 * 10 > 4$$

$$0,5 * 5 + 0,5 * 1 > 2$$

	A	B
X	2;0	3;10
Y	0;5	5;1

There is no Nash equilibrium in pure strategies, so we move on to look for a Nash equilibrium in mixed strategies. Let p be the probability of player 1 playing X, and q the probability of player 2 playing A, we propose the following:

$$u_1(X; (q, 1 - q)) = 2 * q + 3 * (1 - q) = 3 - q$$

$$u_1(Y; (q, 1 - q)) = 0 * q + 5 * (1 - q) = 5 - 5q$$

For player 1 to be indifferent between playing X or Y:

$$3 - q = 5 - 5q$$

$$4q = 2$$

$$q = \frac{1}{2}$$

$$1 - q = \frac{1}{2}$$

Now we are going to do the same exercise but to find the corresponding probabilities for player 1.

$$u_2((p, 1 - p); A) = 0p + 5(1 - p) = 5 - 5p$$

$$u_2((p, 1 - p); B) = 10p + 1(1 - p) = 1 + 9p$$

For player 2 to be indifferent between playing any of his strategies:

$$5 - 5p = 1 + 9p$$

$$4 = 14p$$

$$p = \frac{2}{7}$$

$$1 - p = \frac{5}{7}$$

Therefore, the Nash equilibrium in mixed strategies is:

$$\left\{ \left[\left(\frac{2}{7}, \frac{5}{7} \right); \left(\frac{1}{2}, \frac{1}{2} \right) \right] \right\}$$